第40回日本免疫学会学術集会のお知らせ

会期：2011年11月27日（火）～29日（金）
場所：筑波メッセ（千葉市）
詳細はホームページ http://www-esc.nii.ac.jp/jsi/jsi40/index.html をご覧ください。

平成24年度
日本免疫学会通常総会のお知らせ

会期：2011年11月28日（火）11:30～
場所：筑波メッセ（千葉会場）

平成23年度
日本免疫学会賞・日本免疫学会研究奨励賞

☆第14回日本免疫学会賞
- 空崎 江，（大阪大学，免疫フロンティア研究センター・免疫化学）
- 横田 博（理化学研究所・B-CAM（抗がん剤研究チーム）

☆第6回日本免疫学会研究奨励賞
- 伊藤 幸治（理化学研究所・B-CAM（抗がん剤研究チーム）
- 高橋 一（名古屋大学，生命機能科学研究所）
- 前田 博（筑波大学，生物産業科学研究所）
- 楢原 隆（筑波大学大気科学研究所）

次期総会長選挙のお知らせ

本学会（通算24年10月から平成26年8月までの3年度）日本免疫学会総会の選挙についてお知らせいたします。次期の任期にあたり総会長選挙が行われるもので、ここでは総会長の候補者についてお知らせいたします。選挙候補者名は、学会組織及び大会委員会の決定により決定いたします。総会長への選出に際しては、学会の運営に携わる皆様の皆様のご理解、ご協力をお願い申し上げます。

日本免疫学会の会員が、この機会に総会長選挙の趣旨について理解のうえ、総会長への選出に携わっていただくことを心よりお望み申し上げます。

第20回JSI News Letter
Vol.20 No.1
日本免疫学会
The Japanese Society for Immunology Newsletter

特集／Human Immunology
学術集会へのお誘い／東日本大震災／サマースクール報告／アウトリーチ活動報告-免疫づき未来[日本科学未来館]
学会報告／うちのとくいわさ／若手の広場／新しい研究室を開くにあたって／免疫学とことはじめ／企業の研究室紹介
学術集会へのお誘い

ご案内

会社の皆様にご案内いたします。 学術集会へのお誘いとして、学術集会の開催に関するお知らせをさせていただきます。

タイトル：学術集会へのお誘い

日程：2023年4月2日（火）～4月4日（木）

場所：XX会場

オーディオ：全会場で提供

主催：XX学会

内容：学術集会は、XX学会の研究者や関連分野の専門家が集まり、最新の研究動向や動向についての討議を行う重要なイベントです。

参加勉強会：

1. XX分野の基礎的な知識を深めること
2. 最新の研究成果についての情報交換
3. 他の研究者との交流機会

参加資格：

XX学会の会員

参加費用：

一般：XX円 (XX学会会生・学生無料)

参加方法：

インターネットを通じて、学術集会のウェブサイトをご覧いただけます。

ご質問等は、以下の連絡先までお問い合わせください。

会場：XX会場

電話：0123-456789

Eメール：contact@xx学会.org

学術集会へのお誘いに際して、参加者の方々も顧客感謝の意を込めて、会期中のゲスト限定メニューをご用意いたします。ご参加の皆様に宜しくお願い申し上げます。

ご承知の通り、学術集会は学術研究の場としての重要性を重視し、学術的展開を促進する目的で開催されるものです。今後も同様に学術集会の開催を継続いたします。

ご参加の皆様に宜しくお願い申し上げます。
3.11東日本大震災を体験して

東日本大震災を経験して

東日本大震災は、2011年3月11日に発生した大地震。震源は宮城県沖で、震度7級の大きな地震が発生した。震源は約100km深部にあり、震源地は日本の東側に位置している。

震災によって、沿岸部の建物が破壊され、大規模な被災が発生した。特に宮城県沖地方では、多くの建物が倒壊し、多くの人々が亡くなった。また、津波の影響で海が押し寄せ、住宅街が浸水した。

震災後は、被災者支援と復興活動が行われ、被災者支援のための基金が設立された。また、被災者のための支援活動が行われた。

この地震は、日本の地震史においても珍しい規模の大地震であり、多くの人々に衝撃を与えられた。
ヒト免疫学研究へのアプローチ

ヒトとマウス

ヒトの免疫マウスは、ヒトの遺伝子をもとにマウスに移植したものです。ヒトの免疫システムを研究するために、ヒトの遺伝子が入ったマウスが作られることが一般的です。ヒトの免疫系の細胞や分子は、マウスの免疫系と似た機能を有しているため、ヒトの免疫系の研究に利用されます。

ヒトの免疫系の研究は、ヒトの感染症に対する免疫応答を理解し、免疫系の疾患に対する治療法を発見するための基礎研究です。ヒトの免疫系の研究は、ヒトの健康維持や病気の予防、治療に貢献することが期待されています。

ヒトの免疫系の研究は、ヒトの感染症に対する免疫応答を理解し、免疫系の疾患に対する治療法を発見するための基礎研究です。ヒトの免疫系の研究は、ヒトの健康維持や病気の予防、治療に貢献することが期待されています。
ヒト免疫疾患に よる抗原再活性 T細胞の検出

HIV感染と 免疫

ヒト暴露性 ヘルパT細胞 の分化と疾患

ヒト免疫疾患に 生物学的製剤が もたらした インパクト

ヒト免疫疾患に よる抗原再活性 T細胞の検出

HIV感染と 免疫
ヒト化マウス研究の課題と展望

私たちは、ヒト化マウスの研究に力を入れています。ヒト化マウスは、ヒトの細胞をマウスの胎児内に移植し、成長させた動物です。これは、ヒトの疾患を研究するために非常に有用なモデルです。しかし、ヒト化マウスの研究には多くの課題があります。一つの課題は、ヒトの細胞がマウスの細胞と如何に整合するかです。また、ヒト化マウスの成長や発育が正常かどうかを確認するための検査手段が不足していることも課題です。

ヒト化マウスを用いた研究には、ヒトの疾患を模倣するモデルを作成することが求められています。しかし、ヒト化マウスだけでは、ヒトの全ての疾患を模倣することは難しいです。そのため、ヒト化マウスと他の動物モデルを組み合わせた研究が重要です。

ヒト化マウスの研究は、今後も進化しつつあるでしょう。私たちの研究は、ヒト化マウスの研究をより一層進めるために、持続的に努力を続けていきます。
サマースクール 報告
若い力が躍動した
蔵王の4月

免疫サマースクール2011
in Zaō

参加者：小坂 政行

免疫サマースクール2011
in Zaō

参加者：杉山 友香
サマースクール 報告
「たいまつの火」を引き継いで

久保 尚子

免疫サマースクール 2011 in ZAO
思い出

８月１日～４日、仙台市青葉区の観音山公園にあるホテル「ファーヴァ観音山リゾート&スパにて「免疫サマースクール２０１１」が開催されました。学生たちは、免疫学の大先生や先駆者の研究者たちと
過ごした数日間を熱く語り、もったり話した
ここに繋がります。
免疫ふししし未来2011
【日本科学技術館】

免疫ふししし未来2011「報告」

免疫学部2011年
実施

産学官連携推進課

免疫学部推進部門

免疫学部

免疫学部
免疫ふしぎ未来2011

「免疫ふしぎ未来2011」に参加して

田中 大雅

8月31日に免疫ふしぎ未来2011を開催され、私たちは金沢医科大学の金沢院長先生に指導されました。ポランティアに参加することをしました。最初は緊張してましたが、実際に参加してみると、皆さんに感謝の気持ちを持ちながら、時間をかけて、参加してきました。

本日も開催され、参加者の皆様に感謝の気持ちを持ちながら参加しました。皆さんに感謝の気持ちを持ちながら、時間をかけて、参加してきました。

免疫ふしぎ未来2011

2011年8月31日、免疫ふしぎ未来2011の開催報告として、次回の報告を行いました。今後は、免疫ふしぎ未来2012に向けて、更に多くの活動を行います。

免疫ふしぎ未来2011

2011年9月1日、免疫ふしぎ未来2011の開催報告として、次回の報告を行いました。今後は、免疫ふしぎ未来2012に向けて、更に多くの活動を行います。

免疫ふしぎ未来2011

2011年9月1日、免疫ふしぎ未来2011の開催報告として、次回の報告を行いました。今後は、免疫ふしぎ未来2012に向けて、更に多くの活動を行います。

免疫ふしぎ未来2011

2011年9月1日、免疫ふしぎ未来2011の開催報告として、次回の報告を行いました。今後は、免疫ふしぎ未来2012に向けて、更に多くの活動を行います。
第13回国際TNF会議
（13th International TNF conference, TNF 2011）

 Isis Pharmaceuticalsの同社CEO、リック・カッサディは、TNFという名の化学物質を研究する重要な役割を果たすことが示唆された。TNFは、炎症反応を促進する一つの重要な因子であり、免疫系の活性化を促進する。

 Isis Pharmaceuticalsの社長、リック・カッサディは、TNFの研究が、免疫系の活性化に関与することが示唆される。TNFは、免疫系の活性化を促進する重要な因子であり、炎症反応を促進する。

 Isis Pharmaceuticalsの同社CEO、リック・カッサディは、TNFという名の化学物質を研究する重要な役割を果たすことが示唆された。TNFは、炎症反応を促進する一つの重要な因子であり、免疫系の活性化を促進する。

 Isis Pharmaceuticalsの社長、リック・カッサディは、TNFの研究が、免疫系の活性化に関与することが示唆される。TNFは、免疫系の活性化を促進する重要な因子であり、炎症反応を促進する。
この夏、Kohimote Tadamine Travel Awardによる研究旅行参加を果たし、5月17日からのフランス旅行で、種々の研究旅行に参加させていただきました。私たちは、科学者同士の交流において、その機会を大切に考えます。今後も、この機会を通じて、科学者同士の交流を深めてまいります。

いずれの研究旅行においても、種々の研究者の方々との交流が行われ、私たちは、科学者同士の交流における重要性を再認識することができました。今後も、このような研究旅行を通じて、科学者同士の交流を深めてまいります。
岸本奖受奖者報告

The 15th International Congress of Mucosal Immunologyに参加して

この度は、Tadakuni Kikimoto International Travel Awardの受賞者として、参加者の皆様に要約をはがきを配布。大学在学中の大学院生でありながら、大学院生の受賞者として注目を集めた。私の研究内容は、粘膜免疫と感染症の関係についての研究です。大学院在学中に、粘膜免疫の研究を進め、その成果が認められました。私の研究は、粘膜上皮細胞と免疫細胞の相互作用を解明することを目指しています。今回の受賞は、私の研究が国際的に認められたことを示し、今後も粘膜免疫の研究に取り組み、より高度の研究成果を発表することを目指しています。

Keystone Symposia (Immunoregulatory Network)

この度は、Tadakuni Kikimoto International Travel Awardの受賞者が、Keystone Symposia: Immunoregulatory Network in Mucosal Infectionに招待され、参加した。このシンポジウムは、粘膜免疫と感染症の関係に関する研究者の交流を目的としている。私の研究は、粘膜上皮細胞と免疫細胞の相互作用を解明することを目指しています。今回の参加は、私の研究成果が国際的に認知され、今後も粘膜免疫の研究に取り組み、より高度の研究成果を発表することを目指しています。

Tall 2011

この度は、Tall 2011に参加してきました。Tall 2011は、粘膜免疫の研究者や関係者から注目を集めた。私の研究内容は、粘膜免疫の研究を進め、その成果が認められました。私の研究は、粘膜上皮細胞と免疫細胞の相互作用を解明することを目指しています。今回の参加は、私の研究成果が国際的に認知され、今後も粘膜免疫の研究に取り組み、より高度の研究成果を発表することを目指しています。

Bladder urothelial cells are epithelial-associated molecular patterns (EAMPs) and Th17 cells.

Bladder urothelial cells are epithelial-associated molecular patterns (EAMPs) and Th17 cells.

この度は、University of California, Berkeley Research纸上で発表した研究において、粘膜免疫の研究を進め、その成果が認められました。私の研究は、粘膜上皮細胞と免疫細胞の相互作用を解明することを目指しています。今回の参加は、私の研究成果が国際的に認知され、今後も粘膜免疫の研究に取り組み、より高度の研究成果を発表することを目指しています。
若手の広場

がん死細胞の食糧、がん免疫とCD169陽性マクロファージ

福井医科大学
生化学セノン学術研究所
浅野 講一
email: satoyama@ufdc.waseda.jp

この月、若手研究者としての研究を発表しました。福井医科大学の若手研究者の会に参加し、若手研究者としての機会を得ることができました。

私が取り組んだCD169陽性マクロファージの研究には、がんの治療に関する研究が含まれています。特に、がん死細胞の受益者であるという点が興味深かったです。

がん死細胞の食糧、がん免疫とCD169陽性マクロファージの関係について、若手研究者としての視点で議論しました。がん死細胞の役割について、若手研究者であることを誇りに思っています。

がん死細胞の食糧、がん免疫とCD169陽性マクロファージの研究には、がんの治療に関する研究が含まれています。特に、がん死細胞の受益者であるという点が興味深かったです。

がん死細胞の食糧、がん免疫とCD169陽性マクロファージの関係について、若手研究者としての視点で議論しました。がん死細胞の役割について、若手研究者であることを誇りに思っています。

がん死細胞の食糧、がん免疫とCD169陽性マクロファージの研究には、がんの治療に関する研究が含まれています。特に、がん死細胞の受益者であるという点が興味深かったです。

がん死細胞の食糧、がん免疫とCD169陽性マクロファージの関係について、若手研究者としての視点で議論しました。がん死細胞の役割について、若手研究者であることを誇りに思っています。
小澤 紀克

個人でも実践できるBPE

株式会社ビルシュテッド

新研究室を開くあって

高橋 理

新研究室を開くあって

岩合 和也

平成24年1月15日、早稲田大学病院医学部に任命されました。岩合先生、執拗に努力されられてこられた研究者として、また新創立・大学医学部を支えるスタグナード大学医学部に、ご健闘のほどを賜りますようお願い申し上げます。
新しい研究室を開くにあたって

“死細胞”を利用した免疫制御を目指して

新しい研究室のスタートにあり

新しい研究室を開くにあたって

石丸 直澄

北海道大学医学部免疫学・免疫療法学科
免疫学研究室

石崎 健

北海道大学医学部免疫学・免疫療法学科
免疫学研究室

石崎 健
二種のT細胞

免疫学 ことはじめ

脳科学的ドックに暮らす免疫細胞の代表格は、B細胞の免疫球蛋白が存在する尾をもつT細胞である。T細胞は、免疫応答の最終段階に登場し、抗原に対する免疫応答を誘導する。

免疫応答の最初の段階で、T細胞は抗原を認識し、その抗原をもつ細胞を認識する。この時、T細胞は、胸腺で分化を経て得られるT細胞と、骨髄で分化を経て得られるB細胞とが相対的に細胞数の少ない細胞である。T細胞は、B細胞と異なり、抗原に対する免疫応答を誘導する。

T細胞の免疫応答は、T細胞が抗原を認識することで開始される。T細胞は、抗原を認識するため、抗原に反応するT細胞受容体（TCR）をもつ。TCRは、抗原を認識するための受容体である。

T細胞の免疫応答は、TCRが抗原を認識することで開始される。TCRは、抗原を認識するための受容体である。

免疫応答の最終段階で、T細胞は抗原を認識し、その抗原をもつ細胞を認識する。この時、T細胞は、胸腺で分化を経て得られるT細胞と、骨髄で分化を経て得られるB細胞とが相対的に細胞数の少ない細胞である。T細胞は、B細胞と異なり、抗原に対する免疫応答を誘導する。

T細胞の免疫応答は、T細胞が抗原を認識することで開始される。T細胞は、抗原を認識するため、抗原に反応するT細胞受容体（TCR）をもつ。TCRは、抗原を認識するための受容体である。

免疫応答の最終段階で、T細胞は抗原を認識し、その抗原をもつ細胞を認識する。この時、T細胞は、胸腺で分化を経て得られるT細胞と、骨髄で分化を経て得られるB細胞とが相対的に細胞数の少ない細胞である。T細胞は、B細胞と異なり、抗原に対する免疫応答を誘導する。
グループ内創薬ベンチャー:
First-in-Class型新薬の創生に向けて

私たちの志:ここにいる責任と幸福
—たった一度の、いのちと歩く

三浦 隆
海外だより

「システム生物学」という新しい生物学への挑戦の中で

Institute of Child Health, University College London
小野 昌弘

私はHuman Frontier Science Program（HFSP）の研究員として、University College London (UCL) にてシステム生物学の研究を行いました。HFSPは、基礎科学の発展を促進し、科学と社会の間を架けた橋を築くことを目的としている団体です。このプログラムを通じて、私にとってシステム生物学の世界が広がりました。

システム生物学は、個体の機能を理解するための新しい視点を提供します。個体がどのように機能し、どのように変化するかを理解するためには、個々の構造要素だけでなく、それらがどのように相互作用しているかを理解することが不可欠です。システム生物学は、生物学の分野を大きく変革し、新たな治療法の開発にも寄与すると期待されています。

本稿では、UCL で過ごした期間についての体験と学びを紹介します。

フィオラディアにて

Yongge Cui

私はUCLのHuman Development and Psychological Biology Department にて博士研究を進めており、システム生物学や発生生物学の分野で研究を行っています。システム生物学は、個体の成長や発達のプロセスを理解するために、生物学的、生態学的、発生学的、生態学的、生態学的に多くの要素を考慮する必要があることを示しています。

システム生物学の研究課題は、個体の成長や発達の理解を深めるだけでなく、新規の治療法の開発も可能にします。今後もシステム生物学の分野での研究を進め、新しい発見を得てまいります。
From the Editor

ニュースレター
編集後記

この月に伊吹氏の著書『ヌースクール活動の意義と目的』が出版されました。これに伴い、教室や講義で新たな刺激を受け、学び、成長する機会を提供することを目的に、学生たちに活発な参加を促すための活動を計画しています。

この月の記事では、教室で行われた特別講義の概要と学生への参加を求める活動について伝えます。講義は、教室の特性を生かし、学生の興味と関心を刺激するために計画されています。

大学生のための特別講義は、教員が学生に新しい視点を提供し、各自が学びを深めることを目的としています。この講義では、大学生の視点での新たな発見を生み、自分たちの思考を一層深めることを目的としています。

この月の記事では、教室での特別講義の概要と参加を求める活動について伝えます。講義は、教室の特性を生かし、学生の興味と関心を刺激するために計画されています。
この度、理事会から日本免疫学会の理事長候補の一人として、再度推薦頂きます。大変光栄に思います。日本免疫学会の創立の年に大学に入学し、その後免疫学に触れられてからの分野に入って以来30数年。本学会に育てて頂いたことを思うときに、学会を発展させる理事長候補に推薦され、戸惑いながらも時代の変遷を感じざるを得ません。この間、免疫学を常に医学・生物学の最先端で新しいパラダイムを形成し続けてきました。日本免疫学会の幾多ある、常に時代を先取りしながら免疫学研究を牽引してきた成果であり、その輝かしい歴史を継承・発展させる責務を感じます。

免疫学は、生命科学の中でもっとも先端的で重要な発展を来してきました。システムを制御している細胞や分子の同定と機能の解明が進んできた分野であり、生物学分野を牽引してきました。ポストゲノムの時代に、今やこれらの基礎情報を統合してシステムとしての免疫系の解明が重要であり、かつ可能になっています。リハピールのダイナミックな動態と相互作用に基づく免疫応答の形成と恒常性の維持体制機構などは免疫構造ではなく生物学系の観点とも言えます。その観点上、免疫系によって考案される免疫疾患の病態へと直接関連する研究開発に、免疫学が債せられた臨床医学としての側面を総合して、自己免疫・アレルギー・感染症など医学への新たなアプローチ、ヒト免疫学の本格的推進、全ゲノムをベースにした医学生物学研究として発展、高まっております。

その一方で、学生会員や学会発表者の減少が続いています今日、日本免疫学会の発展は、若い世代の学生・研究者たちが、生命科学と臨床医学の両面から免疫学の新たな興味を持って参加するかの時です。そのためには、免疫学の魅力を広げ、より広い分野に広がる人々を魅了できる学会・シンポジウムなどを展開し、若い研究者が活発に討論と交流ができる場を創ることが必要です。学会運営においても、と最も熟成した学会の一部構成を廃し、会員に直接的な透明性の高い学会へ発展させ、学会員を増やすことも含む若手研究者が積極的に参加できる基盤作ることが重要だと思います。免疫学への研究熱が拡大し広がることによって新しいサポーターを獲得し、アクティブな免疫学研究の発展を支える若手研究者を援助促進することが必要です。昨年の国際免疫学会の成功に伴い、免疫学研究の国際的リーダーとしての世界最高の学会に参加することができました。これらの点を進められるように、よりアクティブな免疫学会の継続と発展を期待し、盡くせば幸いです。

選挙管理委員会
高木精、生田宏一、反町典子

【印】4月20日必着まで延長いたしました。
この度、理事長より理事候補の一任にご推薦を頂きました。大変光栄に存じます。ここでは本学会に対する私の感謝の意を述べ、拝負の意をこめて参上いたします。

日本免疫学会の目的は、免疫学を研究する会員の研究発展を助成する組織として、その研究の発展と相互の交流を促進することを主眼に掲げられております。具体的な目的には、会員による研究発表の機会を提供し、会員相互の相互交流を促進し、基本的な研究を可能にすることなどが挙げられます。これらの目的を達成することにより、免疫学の発展と研究者の交流が促進されることが期待されています。

私は、学生時代に免疫学を学び、その魅力に惹かれています。免疫学に関する研究については、さまざまな試みをしてきました。特に、ウイルスの感染や免疫系の機能の解明に取り組んできました。免疫学の研究は、その複雑さを克服するためには、細胞の機能を理解し、相互の関係を解明することが必要不可欠です。これにより、免疫学の発展を支える研究者の数が増えることが期待できます。

この機会を有して、ご推薦を顶きました理事長に深く感謝の意を表するとともに、今後ともご支援を賜りたいと考えております。ご理解とご支援を賜りますようお願い申し上げます。